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Photophysical Investigations of Chiral 
Recognition in Crown Ethers 

Sir: 

The present communication reports the first use of photo-
physical techniques for the elucidation of chiral recognition 
in crown ethers.1 1 0 Fluorescence quenching, energy transfer, 
and excimer formation have provided information on the 
complexation of achiral and chiral guests, on the conformation 
of functionalized crovvnethers and on the effects of solvents 
and guests on given conformations. 

1,2,10,11 -(S,S,S,S) - ( - ) -Tetracarbo(/V, JV)dimethylamido-
3,6,9,12,15,18-hexaoxocyclooctadecane (L-crown-amide, IL ) 

or its enantiomer, 1,2,10,1 l-(i?,/?,/?,i?)-(+)-tetracarbo-
(N, AOdimethylamide-3,6,9,' 2,15,18-hexaoxocyclooctadec­
ane (D-crown-amide, I D ) , 1 1 were used as starting materials 
for the synthesis of optically active fluorescent crown ethers. 
I L and 1D were converted into their acids, 2L and 2D- The acids 
provided the acid chlorides, 3L and 3D, which, in turn, allowed 
the preparation of L-crown-D-Trp (4LD), L-crown-L-Trp (4LL), 
D-crown-D-Trp ( 4 D D ) , D-crown-L-Trp ( 4 D L ) , 1 2 L-crown-pyr 
( 5 L ) , and D-crown-pyr (5D) - 1 3 
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Absorption spectra of all isomeric crown ether tryptophans 
were identical in methanol.14 Small, but noticeable, differences 
were observed, however, between the emission intensities of 
the diastereomers: <J>4DL = 0.200 ± 0.008, $ 4 L L = 0.180 ± 
0.008.15 Addition of TbC^ decreased the fluorescence yields. 
Stern-Volmer plots for 5.0 X 10 - 5 M D-crown-L-Trp and 
L-crown-L-Trp in MeOH were linear up to ~5.0 X 10~5 M 
TbCU, after which they leveled off. This data implies the 
quenching of the excited states by Tb 3 + ions bound in the 
cavities of the crown ethers. Treatment of fluorescence in­
tensities in the absence and in the presence of different amounts 
of TbCb 1 6 leads to binding constants of /C(Tb3+/D-crown-
L-Trp) = (2.90 ± 0.21) X 104 M" 1 and K(Tb3+/L-crown-L-
Trp) = (2.76 ± 0.12) X 104 M - ' . These values are of the same 
magnitude as determined for metal ion-crown ether com­
plexes.17 Complexing an achiral guest into crown ethers is seen 
to be unaffected by the chirality of the host. Cavity diameters 
are apparently the same for D-crown-L-Trp and L-crown-L-
Trp. Only modest chiral recognitions have been observed using 
glycine-L-phenylalanine (Gly-L-Phe) and glycine-D-phenyl-
alanine (Gly-D-Phe). Treatment of fluorescence intensities of 
D-crown-L-Trp (5.0 X 10 - 5 M in MeOH) in the absence and 
in the presence of different amounts of chiral guests16 leads to 
A:(Gly-L-Phe/D-crown-L-Trp) = (1.3 X 0.1) X 1 0 4 M - ' and 
K(Gly-D-Phe/D-crown-L-Trp) = (1.9 ±0 .1 ) X 104 M - 1 . 

Substantial chiral discriminations are seen, however, in the 
efficiencies of energy transfer from the tryptophan side arms 
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Figure 1. Relative emission intensities of 5.0 X 10~3 M TbCl3 in the 
presence of 2.0 X 1O-4 M TryNHAc (upper left corner). Three-dimen­
sional plots of emission spectra of varying amounts of TbCh in the presence 
of 5.0 X 10 - 5 M D-crown-L-Trp and L-crown-L-Trp (excited at 290 nm) 
in MeOH. 
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Figure 2. Emission spectra of 2.0 X 1O-6M L-crown-pyr in ethylene glycol 
(1, - + - ) , DMF (2, - - - ) , THF (3, —), THF saturated by KCl (stirred 
overnight) (4, ), THF containing 1.25 X IO"3 M TbCl3 (5, ). 
Emission spectra of 8.0 X 10~6 M PyNHAc in THF (6, • • •) are also in­
cluded for comparison. All spectra were taken at an excitation wavelength 
of 334 nm and at 25 0C. Inset shows plots of quenching data according 
to equation given in note 21. All spectra were obtained at excitation 
wavelength of 290 nm. 

of the crown hosts to the trapped Tb3+ guests in 4LL and 4DL 
(Figure 1). In the absence of crown ethers, energy transfer is 
negligible (see upper left corner in Figure 1). Energy transfer 
becomes efficient when the donors, the flexible tryptophan 
arms, can most closely approach the Tb3+ acceptors, localized 
in the cavities of the crown ethers. This type of energy transfer 
is, therefore, a sensitive measure of host conformational 
changes. The almost twice as efficient energy transfer in the 
L-crown-L-Trp/Tb3+ complex than that in the D-crown-L-
Trp/Tb3+ complex implies an appreciably shorter average 
interchromophoric distance in the former than in the latter. 

The bulky pyrene side arms in 5r_ and 5p are sufficiently 
close to allow for intramolecular excimer formation. Excimer 
to monomer ratios are highly solvent dependent (Figure 2). In 
alcohols (MeOH, ethylene glycol) excimer formation pre­
dominates; in CH2CI2 THF18 and DMF monomers coexist 
with excimers.19 Qualitatively, fluorescence quenching by 
TbCb is similar to that observed for the typtophan containing 

Figure 3. Emission spectra of 5.0 X 10-5 Gly-L-Trp in TH F in the presence 
of 0 (1), 1.25 X 10"5 M D-crown-pyr (2D), 1.25 X 10~5 M L-crown-pyr 
(2L), 5.0 X 10~5 M D-crown-pyr (3D), 5.0 X 10"5 M L-crown-pyr (3L). 
For comparison, the emission spectrum of 1.25 X 10~5 M L-crown-pyr 
is also given in THF (4). 

crown ethers. Hence, there is no discrenable difference in 
quenching, in the binding OfTb3+ between D-crown-pyr and 
L-crown-pyr. Quantitatively the situation is quite complex. 
Quenching the singlet manifold by a metal ion, bound in the 
crown ether cavity, competes with excimer formation. Con­
comitantly, the average pyrene-pyrene interchromophoric 
distances, hence the efficiency of excimer formation, may well 
be altered upon complexation. Alteration of monomenexcimer 
ratios by a nonquenching molecule provides, therefore, evi­
dence for conformational changes of the host upon complex­
ation of a guest. This phenomenon is illustrated by the effect 
of K+ complexation on the emission spectra of L-crown-pyr 
in THF. It is seen in Figure 2 that addition of KCl (a guest 
which does not quench the fluorescence of pyreneacetamide) 
enhances the excimer at the expense of the monomer emission 
(compare spectra 3 and 4 in Figure 2). 

Fluorescence intensities of glycine-L-tryptophan (Gly-L-
Trp) have been quenched differentially by D-crown-pyr and 
L-crown-pyr in THF (Figure 3).20 Emission intensities of 5.0 
X 1O-5M Gly-L-Trp as functions of added crown ethers lead 
to21 K(Gly-L-Trp/D-crown-pyr) = (1.2 X 0.2) X 105 M - 1 and 
A:(Gly-L-Trp/L-crown-pyr) + (5.0 ± 0.3) X 104 M"1. These 
binding constants are factors of 2.5 to 10 greater than those 
observed for the binding of GIy-L- (or D-) Phe to tryptophan-
carrying crown ethers in methanol. More significantly, chiral 
recognition in binding is AT(Gly-L-Trp/D-crown-pyr)/ 
^(Gly-L-Trp/L-crown-pyr) = 2.4. Alternatively expressed, 
the free energies of binding ranged from 6.1 to 7 kcal/mol and 
chiral recognition from 0.23 to 0.52 kcal/mol, and therefore 
a "chiral efficiency" of ~4-7% was realized. This substantial 
chiral recognition in complexation is the consequence of the 
more pronounced interactions between the tryptophan moiety 
of the guest and the pyrene side chain of the host than those 
observed in tryptophan containing crown ethers. 

Proper alignments of host and guest moieties have been 
recognized for some time as a requirement for maximizing 
chiral recognition in crown ethers.1 Photophysical investiga­
tions, initiated in the present work, shows just how much dif­
ferent substituents on the crown ether, different guests, and 
solvents can influence chiral recognition. This approach allows 
quantitative assessments of the parameters involved and thus 
provides the required knowledge for the design of host-guest 
systems capable of maximum chiral recognition. Elucidation 
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of kinetic and thermodynamic details of chiral recognition in 
the present and other systems is the subject of our current at­
tention. 
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chemical research using lasers, this volume is a collection of eight 
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herent anti-Stokes Raman spectroscopy; theory of molecular rate 
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knecht, J. K. Stille, and M. Szwarc. The chapters, one from each 
contributor, range widely in style. A few may be read as short intro­
ductions to a particular topic, while others tersely summarize the 
contributor's research field. Historical notes on places and institutions, 
and anecdotal material, are scattered throughout the text. Several of 
the authors include a complete list of their publications, while several 
others discuss their plans for future research. 
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Volume 5 of "Electronic Structure and Magnetism of Inorganic 
Compounds" discusses advances in the field during 1974 and 1975. 
Nearly 1600 references are cited in the four chapters: Electronic 
Spectra, by P. Day; Magnetic and Natural Optical Activity, by A. J. 
McCaffery; Magnetic Susceptibility Measurements, by A. K. 
Gregson; and Luminescence Properties of Inorganic Compounds, by 
D. J. Robbins and A. J. Thomson. Unfortunately, a planned fifth 
chapter on photoelectron spectroscopy could not be included. 

The authors have produced a critical survey of research in the four 
areas, emphasizing the most significant advances in each. The report 
is not quite exhaustive; the more routine work in some instances has 
been sifted out. What remains is a treasury of experimental and the­
oretical results, tied together with expert commentary. Although the 
reports in this series are written for the "active specialist chemist", 
they will certainly be found valuable by the interested nonspecialist 
as well. As financially pinched libraries continue to cut back on their 
journal subscriptions, researchers will be forced to depend more 
heavily on periodical reports such as these. It can only be hoped that 
the high quality of this series is maintained in subsequent volumes. 
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